[1] Akaike, H. (1974). A new look at the statistical model identification.IEEE transactions on automatic control, 19(6), 716-723. [2] Bai, S. (2020). Developing a learning progression for probability based on the GDINA model in China.Frontiers in Psychology, 11, 2561. [3] Chen L., Savalei V., & Rhemtulla M. (2020). Two-stage maximum likelihood approach for item-level missing data in regression.Behavior Research Methods, 52(6), 2306-2323. [4] Dai, S. (2017). Investigation of missing responses in implementation of cognitive diagnostic models (Unpublished doctorial dissertation). Indiana University. [5] de Ayala R. J., Plake B. S., & Impara J. C. (2001). The impact of omitted responses on the accuracy of ability estimation in item response theory.Journal of Educational Measurement, 38(3), 213-234. [6] de la Torre, J. (2009). DINA model and parameter estimation: A didactic.Journal of Educational and Behavioral Statistics, 34(1), 115-130. [7] de la Torre, J. (2011). The generalized DINA model framework.Psychometrika, 76(2), 179-199. [8] Dempster A. P., Laird N. M., & Rubin D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm.Journal of the Royal Statistical Society: Series B (Methodological), 39(1), 1-22. [9] Dong, Y., & Peng, C. Y. J. (2013). Principled missing data methods for researchers.SpringerPlus, 2(1), 1-17. [10] Eekhout I., Enders C. K., Twisk J. W., de Boer M. R., de Vet H. C., & Heymans M. W. (2015). Analyzing incomplete item scores in longitudinal data by including item score information as auxiliary variables.Structural Equation Modeling: A Multidisciplinary Journal, 22(4), 588-602. [11] Enders, C. K. (2010). Applied missing data analysis. Guilford press. [12] Finch, H. (2008). Estimation of item response theory parameters in the presence of missing data.Journal of Educational Measurement, 45(3), 225-245. [13] Gao X., Wang D., Cai Y., & Tu D. (2018). Comparison of CDM and its selection: A saturated model, a simple model or a mixed method.Journal of Psychological Science, 41(3), 727-734. [高旭亮, 汪大勋, 蔡艳, 涂冬波. (2018). 认知诊断模型的比较及其应用研究: 饱和模型、简化模型还是混合方法.心理科学, 41(3), 727-734.] [14] Graham, J. W. (2009). Missing data analysis: Making it work in the real world.Annual Review of Psychology, 60, 549-576. [15] Graham J. W., Olchowski A. E., & Gilreath T. D. (2007). How many imputations are really needed? Some practical clarifications of multiple imputation theory.Prevention Science, 8(3), 206-213. [16] Guo L., & Zhou W. (2021). Nonparametric methods for cognitive diagnosis to multiple-choice test items.Acta Psychologica Sinica, 53(9), 1032-1043. [郭磊, 周文杰. (2021). 基于选项层面的认知诊断非参数方法.心理学报, 53(9), 1032-1043.] [17] Huisman M., & Molenaar I.W. (2001). Imputation of missing scale data with item response models. In: A. Boomsma, M. A. J. van Duijn, & T. A. B. Snijders (Eds.), Lecture Notes in Statistics: Vol. 157: Essays on Item Response Theory (pp. 221-244). Springer. [18] Jang, E. E. (2009). Cognitive diagnostic assessment of L2 reading comprehension ability: Validity arguments for Fusion Model application to LanguEdge assessment. Language Testing, 26(1), 31-73. [19] Jeličić H., Phelps E., & Lerner R. M. (2010). Why missing data matter in the longitudinal study of adolescent development: Using the 4-H Study to understand the uses of different missing data methods.Journal of Youth and Adolescence, 39(7), 816-835. [20] Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory.Applied Psychological Measurement, 25(3), 258-272. [21] Kaya, Y., & Leite, W. L. (2017). Assessing change in latent skills across time with longitudinal cognitive diagnosis modeling: An evaluation of model performance.Educational and Psychological Measurement, 77(3), 369-388. [22] Leacy F. P., Floyd S., Yates T. A., & White I. R. (2017). Analyses of sensitivity to the missing-at-random assumption using multiple imputation with delta adjustment: application to a tuberculosis/HIV prevalence survey with incomplete HIV-status data.American Journal of Epidemiology, 185(4), 304-315. [23] Lee Y.-S., Park Y. S., & Taylan D. (2011). A cognitive diagnostic modeling of attribute mastery in Massachusetts, Minnesota, and the U.S. national sample using the TIMSS 2007.International Journal of Testing, 11(2), 144-177. [24] Lin, T. H. (2010). A comparison of multiple imputation with EM algorithm and MCMC method for quality of life missing data.Quality & Quantity, 44(2), 277-287. [25] Liu Y., Tian W., & Xin T. (2016). An application ofM2 statistic to evaluate the fit of cognitive diagnostic models. Journal of Educational and Behavioral Statistics, 41(1), 3-26. [26] Liu Y., Xin T., Andersson B., & Tian W. (2019). Information matrix estimation procedures for cognitive diagnostic models.British Journal of Mathematical and Statistical Psychology, 72(1), 18-37. [27] Liu Y., Xin T., Li L., Tian W., & Liu X. (2016). An improved method for differential item functioning detection in cognitive diagnosis models: an application of Wald statistic based on observed information matrix.Acta Psychologica Sinica, 48(5), 588-598. [刘彦楼, 辛涛, 李令青, 田伟, 刘笑笑. (2016). 改进的认知诊断模型项目功能差异检验方法——基于观察信息矩阵的Wald统计量.心理学报, 48(5), 588-598.] [28] Ma, W., & de la Torre, J. (2020). GDINA: An R package for cognitive diagnosis modeling.Journal of Statistical Software, 93(14), 1-26. [29] Ma, W., & de la Torre, J. (2016). A sequential cognitive diagnosis model for polytomous responses.British Journal of Mathematical and Statistical Psychology, 69(3), 253-275. [30] Ma W., Iaconangelo C., & de la Torre, J. (2016). Model similarity, model selection, and attribute classification.Applied Psychological Measurement, 40(3), 200-217. [31] Marshall A., Altman D. G., Royston P., & Holder R. L. (2010). Comparison of techniques for handling missing covariate data within prognostic modelling studies: A simulation study.BMC Medical Research Methodology, 10(1), 1-16. [32] Mazza G. L., Enders C. K., & Ruehlman L. S. (2015). Addressing item-level missing data: A comparison of proration and full information maximum likelihood estimation.Multivariate Behavioral Research, 50(5), 504-519. [33] Nájera P., Abad F. J., & Sorrel M. A. (2021). Determining the number of attributes in cognitive diagnosis modeling.Frontiers in Psychology, 12, 321. [34] Newman, D. A. (2003). Longitudinal modeling with randomly and systematically missing data: A simulation of ad hoc, maximum likelihood, and multiple imputation techniques.Organizational Research Methods, 6(3), 328-362. [35] Pan, Y., & Zhan, P. (2020). The impact of sample attrition on longitudinal learning diagnosis: A Prolog.Frontiers in Psychology, 11, 1051. [36] Rezvan P. H., Lee K. J., & Simpson J. A. (2015). The rise of multiple imputation: A review of the reporting and implementation of the method in medical research.BMC Medical Research Methodology, 15(1), 1-14. [37] Rubin, D. B. (1976). Inference and missing data.Biometrika, 63(3), 581-592. [38] Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art.Psychological Methods, 7(2), 147-177. [39] Schwarz, G. (1978). Estimating the Dimension of a Model.The Annals of Statistics, 6(2), 461-464. [40] Shan, N., & Wang, X. (2020). Cognitive diagnosis modeling incorporating item-level missing data mechanism.Frontiers in Psychology, 11, 564707. [41] van Buuren, S. (2018). Flexible imputation of missing data, Second Edition. Chapman and Hall/CRC. [42] van Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained Equations in R.Journal of Statistical Software, 45(3), 1-67. [43] Wothke, W. (2000). Longitudinal and multigroup modeling with missing data. In T. D. Little, K. U. Schnabel, & J. Baumert (Eds.), Modeling longitudinal and multilevel data (pp. 205-224). Psychology Press. [44] Xiao, J., & Bulut, O. (2020). Evaluating the performances of missing data handling methods in ability estimation from sparse data.Educational and Psychological Measurement, 80(5), 932-954. [45] Xu X., de la Torre J., Zhang J., Guo J., & Shi N. (2020). Estimating CDMs using the slice-within-gibbs sampler.Frontiers in Psychology, 11, 2260. [46] Xu, X., & von Davier, M. (2006). Cognitive diagnosis for NAEP proficiency data. ETS Research Report Series, 2006(1), i-25. [47] Ye S. J., Tang W. Q., Zhang M. Q., & Cao M. C. (2004). Techniques for missing data in longitudinal studies and its application.Advances in Psychological Science, 22(12), 1985-1994. [叶素静, 唐文清, 张敏强, 曹魏聪. (2014). 追踪研究中缺失数据处理方法及应用现状分析.心理科学进展, 22(12), 1985-1994.] [48] Zhang, S., & Wang, S. (2018). Modeling learner heterogeneity: A mixture learning model with responses and response times.Frontiers in Psychology, 9, 2339. |